Using Sparse Parameter Estimation for Semantic Parsing
نویسندگان
چکیده
This paper addresses the problem of semantic parsing, by which natural language sentences are translated into a form which conveys their underlying meaning. Semantic parsing involves a parameter estimation process, which is a convex optimization problem. The optimization formulation of previous approaches often requires huge amount of time to converge due to the high dimensional feature space. In this paper we introduce a fast semantic parsing framework which uses l1norm regularized learning to get a sparse model and better convergence speed. Experiments demonstrate overall higher performance of our semantic parsing system using inverse λ, generalization and l1 regularization. Regularized parameter updating shows significantly improvement on the learning speed and reduced model size.
منابع مشابه
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملBayesian Learning of Non-compositional Phrases with Synchronous Parsing
We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead to empirically effective results. Inc...
متن کاملBayesian Learning of Non-Compositional Phrases with Synchronous Parsing
We combine the strengths of Bayesian modeling and synchronous grammar in unsupervised learning of basic translation phrase pairs. The structured space of a synchronous grammar is a natural fit for phrase pair probability estimation, though the search space can be prohibitively large. Therefore we explore efficient algorithms for pruning this space that lead to empirically effective results. Inc...
متن کاملMatching Pursuits with Random Sequential Subdictionaries
Matching pursuits are a class of greedy algorithms commonly used in signal processing, for solving the sparse approximation problem. They rely on an atom selection step that requires the calculation of numerous projections, which can be computationally costly for large dictionaries and burdens their competitiveness in coding applications. We propose using a non adaptive random sequence of subdi...
متن کامل